

SIES College of Arts, Science & Commerce (Autonomous)

Department of Statistics

Faculty: Science Program: B.Sc. Course: Statistics

Syllabus for F.Y.B.Sc. (Credit Based Semester and Grading System with effect from the academic year 2018–2019)

SEMESTER I

THEORY

TITLE OF COURSE	DESCRIPTIVE STATISTICS I			
COURSE CODE	UNIT	TOPICS	LECTURES/ WEEK	CREDITS
	Ι	TYPES OF DATA AND DATA CONDENSATION	1	
PAPER I SIUSSTA11	II	MEASURES OF CENTRAL TENDENCY	1	2
	III	MEASURES OF DISPERSION, SKEWNESS & KURTOSIS	1	
TITLE OF COURSE	STATISTICAL METHODS I			
COURSE CODE	UNIT	TOPICS	LECTURES/ WEEK	CREDITS
	Ι	ELEMENTARY PROBABILITY THEORY	1	
PAPER II SIUSSTA12	П	DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS	1	2
	III	STANDARD DISCRETE DISTRIBUTIONS	1	

PRACTICAL

COURSE CODE	PRACTICALS BASED ON	LECTURES/ WEEK	CREDITS
SIUSSTAP1	SIUSSTA11	3	2
	SIUSSTA12	3	2

SEMESTER II

THEORY

TITLE OF COURSE	DESCRIPTIVE STATISTICS II			
COURSE CODE	UNIT	TOPICS	LECTURES/ WEEK	CREDITS
	Ι	CORRELATION AND REGRESSION ANALYSIS	1	
PAPER I SIUSSTA21	II	TIME SERIES	1	2
	III	INDEX NUMBERS	1	
TITLE OF COURSE	STATISTICAL METHODS II			
COURSE CODE	UNIT	TOPICS	LECTURES/ WEEK	CREDITS
	Ι	CONTINUOUS RANDOM VARIABLES	1	
PAPER II SIUSSTA22	II	STANDARD CONTINUOUS DISTRIBUTIONS	1	2
	III	ESTIMATION AND TESTING OF HYPOTHESIS	1	

PRACTICAL

COURSE CODE	PRACTICALS BASED ON	LECTURES/ WEEK	CREDITS
SIUSSTAP2	SIUSSTA21	3	2
	SIUSSTA22	3	

SYLLABUS FOR F.Y.BSc. UNDER AUTONOMY SEMESTER I PAPER I

Objectives :

- To be well versed with data collection techniques.
- To effectively use data visualization and summarization techniques to understand data.

Course Code	Title	Credits
SIUSSTA11	DESCRIPTIVE STATISTICS I	2 Credits
		(45 lectures)
UNIT I: TYP	ES OF DATA AND DATA CONDENSATION	15 Lectures
Types of data:	Qualitative and Quantitative data, Time series data and cross section	
data, discrete a	nd continuous data. Different types of scales: nominal, ordinal, interval	
and ratio.		
Concept of pop	oulation and sample. Census and Sample survey. Relative merits and	
demerits. Statis	stical Organizations and their functions (CSO, NSSO). Survey findings.	
Primary data: (Concept of a questionnaire and a schedule. Secondary data: Sources.	
Case studies ill	ustrating use of Statistics in different sectors.	
Diagrams: Bar	diagrams, Pie diagram	
Classification a	and Tabulation of categorical data up to order three. Association of	
attributes: Yule	e's coefficient of association (Q), Yule's coefficient of Colligation (Y).	
UNIT II: MEASURES OF CENTRAL TENDENCY		15 Lectures
Univariate frequency distribution of discrete and continuous variables. Cumulative		
frequency distribution. Graphical representation of frequency distribution by		
Histogram, Frequency curve, Cumulative frequency curves, Stem and leaf diagram.		
Central tenden	cy of data. Requisites of a good measure of central tendency. Positional	
averages: Median, Mode, Partition Values: Quantiles. Mathematical averages:		
Arithmetic mea	an (Simple mean, trimmed mean, weighted mean, combined mean),	
Geometric mea	n, Harmonic mean. Merits and demerits of different measures.	
UNIT III: ME	ASURES OF DISPERSION, SKEWNESS & KURTOSIS	15 Lectures
Concept of dis	persion. Requisites of good measure of dispersion.	
Absolute meas	ures of dispersion: Range, Quartile Deviation, Mean absolute deviation,	
Standard devia	tion and corresponding relative measures of dispersion. Combined	
variance.		
Raw & Central	moments and relationship between them.	
Concept of Skewness and Kurtosis: Absolute and Relative measures of Skewness:		
Karl Pearson's, Bowley's and Measure based on moments. Measure of Kurtosis based		
on moments.		
Box & Whisker	Plot.	

SEMESTER I : PRACTICALS BASED ON COURSE SIUSSTA11

1.	Tabulation and Classification of Data
2.	Theory of attributes
3.	Data Visualization (Excel)
4.	Measures of central tendency I
5.	Measures of central tendency II (Excel)
6.	Measures of dispersion I
7.	Measures of dispersion II (Excel)
8.	Moments, Measures of Skewness and Kurtosis I
9.	Moments, Measures of Skewness and Kurtosis II (Excel)

PAPER II

Objectives :

- To understand the concepts of probability and probability distribution
- To fit an appropriate distribution using MS excel to data sets

Course	Title	Credits
Code		
SIUSSTA12	STATISTICAL METHODS I	2 Credits
		(45 lectures)
UNIT I: ELE	MENTARY PROBABILITY THEORY	15 Lectures
Random exper-	iment, Sample space, Event, Operation of events, mutually	
exclusive and e	exhaustive events.	
	hematical), Empirical (Statistical) definitions of Probability and	
1 1	s. Subjective probability.	
	Addition and Multiplication of probabilities.	
	of events, pair-wise and mutual independence of three events.	
	obability, Bayes' theorem.	187 /
DISTRIBUTI	CRETE RANDOM VARIABLES AND PROBABILITY	15 Lectures
	crete random variable. Probability distribution and cumulative	
distribution function, definition and their properties.		
Expectation of a random variable. Theorems on Expectation & Variance.		
Raw and Central moments and their relationships (up to order four).		
Concepts of Skewness and Kurtosis.		
Joint (Bivariate) probability distribution of two discrete random variables.		
Marginal and c	conditional distributions. Coefficient of Correlation. Independence	
of two random	variables.	
UNIT III: ST	ANDARD DISCRETE DISTRIBUTIONS	15 Lectures
Discrete Unifo	rm, Hypergeometric, Binomial and Poisson distributions: mean,	
	ecurrence relation for probability, fitting of distribution.	
	oximation to Hypergeometric distribution. Poisson approximation	
to Binomial distribution.		

SEMESTER I: PRACTICALS BASED ON COURSE SIUSSTA12

1.	Probability
2.	Conditional Probability
3.	Discrete Probability distributions
4.	Bivariate probability distributions
5.	Standard Discrete distributions I
6.	Standard Discrete distributions II
7.	Use of MS Excel

SYLLABUS FOR F.Y.BSc. UNDER AUTONOMY

SEMESTER II PAPER I

Objectives:

- To understand forecasting techniques to predict future trend in time series
- To understand concept of index numbers to calculate real income and dearness allowance,

Course Code	Title	Credits	
SIUSSTA21	DESCRIPTIVE STATISTICS II	2 Credits	
		(45 lectures)	
UNIT I: COR	RELATION AND REGRESSION ANALYSIS	15 Lectures	
	ency distribution, marginal and conditional distribution, Scatter		
•	ble chart. Product moment correlation coefficient and its properties.		
1	nk correlation (with and without ties).		
0	on. Fitting a straight line by method of least squares. Coefficient		
	on. Relation between regression coefficients and correlation		
coefficient.			
-	es reducible to linear form by transformation. Fitting a quadratic		
	od of least squares.		
UNIT II: TIM		15 Lectures	
	me series. Its components. Models of time series.		
1	noothing method. rend by: Freehand curve, Method of semi averages, Method of		
Moving average			
	nerits of these methods.		
Estimation of seasonal component by, Method of simple averages, Ratio to			
	moving average method, Ratio to trend method.		
	UNIT III: INDEX NUMBERS 15 Lectures		
	as a comparative tool. Stages in the construction of Index		
	Numbers. Simple and Composite Index Numbers. Simple and weighted aggregate		
index numbers. Simple and weighted average of relatives.			
Special index numbers: Laspeyre's, Paasche's, Marshal-Edgeworth's, Dorbisch &			
Bowley's and Fisher's Index Numbers.			
Quantity Index Numbers and Value Index Number.			
	Time reversal test, Factor reversal test, Circular test.		
	Fixed base Index Numbers, Chain base Index Numbers, Base shifting, Splicing.		
Cost of living index number, Concept of real income.			

SEMESTER II: PRACTICALS BASED ON COURSE SIUSSTA21

1.	Correlation analysis
2.	Regression analysis
3.	Correlation & Regression analysis (Excel)
4.	Curve fitting (Excel)
5.	Time series I
6.	Time series II (Excel)
7.	Index number-I
8.	Index number-II

PAPER II

Objectives:

- To understand the importance of Bell curve and other distributions used in data analysis in industry.
- To assess population characteristics on the basis of sample using estimation and testing theory.

Course Code	Title	Credits	
SIUSSTA22	STATISTICAL METHODS II	2 Credits	
		(45 lectures)	
UNIT I: CON	TINUOUS RANDOM VARIABLES	15 Lectures	
Definition of co	ontinuous random variable, probability density function and		
cumulative dist	tribution function. Graphical representation and properties.		
Expectation of	a continuous random variable, Properties.		
Raw and centra	al moments, Relationship between them (up to order 4).		
Measures of lo	cation, dispersion, skewness and kurtosis.		
UNIT II: STA	NDARD CONTINUOUS DISTRIBUTIONS	15 Lectures	
Uniform, Expo	nential (with location, scale parameter) and Normal distribution.		
Derivations of	mean, median and variance of Uniform and Exponential		
distribution. La	ack of memory property of exponential distribution.		
Properties of N	formal distribution. Use of normal tables. Normal approximation to		
Binomial and H			
UNIT III: ESTIMATION AND TESTING OF HYPOTHESIS		15 Lectures	
Parameter, stat	Parameter, statistic, estimator and estimate, sampling distribution, bias and		
standard error of	of an estimator.		
Central Limit theorem (statement only).			
Sampling distrionly)	Sampling distributions of sample mean and sample proportion. (For large sample only)		
Point and Interval estimate of mean and proportion based on single sample of			
large size and c sample sizes.	large size and difference between two means and proportions based on large sample sizes.		
Null and alternate hypotheses, Simple and composite hypothesis. Type I and II			
errors, Critical	errors, Critical region, Size of the test, Level of significance. Power of the test		
Applications of	Applications of Normal Distribution: Tests for specified value of population		
mean and popu	mean and population proportion. Tests for equality of two population means and		
population prop	population proportions.		

SEMESTER II: PRACTICALS BASED ON COURSE SIUSSTA22

1.	Continuous distributions
2.	Standard Continuous distributions
3.	Normal distribution
4.	Point and Interval Estimation
5.	Large sample tests
6.	Demonstration of Central limit theorem (Excel)
7.	Use of MS Excel

REFERENCES:

- 1. Agarwal B.L. (1978). *Basic Statistics*: New Age International Ltd.
- 2. David S.(1994). *Elementary Probability* : Cambridge University Press.
- Goon A.M., Gupta M.K.& Dasgupta B. (1968). *Fundamentals of Statistics*, Volume II: The World Press Private Limited, Calcutta.
- 4. Gupta S.C.& Kapoor V.K.(2007). Fundamentals of Mathematical Statistics: Sultan Chand & Sons
- 5. Gupta S.C.& Kapoor V.K.(2014). Fundamentals of Applied Statistics: Sultan Chand & Sons
- 6. Hoel P.G.(1947). Introduction to Mathematical Statistics: Asia Publishing House
- 7. Hogg R.V. & Tannis E.P.(1977). Probability and Statistical Inference: McMillan Publishing Co. Inc.
- 8. Kothari C.R.(1985). Research Methodology: Wiley Eastern Limited.
- 9. Medhi, J. (2013). Statistical Methods, An Introductory Text. Second Edition: New Age International Ltd.
- 10. Pitan Jim. (1977) . Probability: Narosa Publishing House.
- 11. Spiegel M.R. (1961). Theory and Problems of Statistics. Schaum's Publications series: Tata McGraw-Hill.

EXAMINATION PATTERN

Internal Assessment of Theory per Course per Semester

1. Class Test	20 Marks.
2. Project / Assignment / Presentation etc.	20 Marks.

Semester End Theory Examination per Course

At the end of the semester, examination of 2 hours duration and 60 marks based on the three units shall be held for each course.

Pattern of Theory question paper:

There shall be four compulsory questions of 15 marks each (with Internal Option). Question 1 based on Unit I, Question 2 based on Unit II, Question 3 based on Unit III. Question 4 based on all three units.

Semester End Practical Examination per Course

1. Journal10 Marks.2. Practical Examination40 Marks.At the end of the semester, practical examination of 1 hour 30 minutes duration and 40 marks shall beheld for each course.

Pattern of Practical question paper:

There shall be four compulsory questions of 10 marks each (with Internal Option). Question 1 based on Unit I, Question 2 based on Unit II, Question 3 based on Unit III. Question 4 based on all three units.